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We study the dynamics of two conservative oscillators with perturbations from a linear
displacement coupling and non-Hamiltonian forces such as damping. We examine the dynamics
of these systems when they are near the primary resonance using secular perturbation theory. We
show that near resonance a large class of driven oscillators and two coupled oscillators can be trans-
formed to the same ordinary differential equations (ODEs). This common type of dynamics near
the resonance is a generalization of the standard Hamiltonian dynamics of two coupled conservative
oscillators. We derive expressions for the parameters in these ODEs. From these parameters, we de-
rive analytical expressions for the linear fixed point behavior of these oscillators near resonance. We
find a relation between the amplitude frequency coupling of the oscillators and their phase-locking
behavior. In particular, we show that two hard oscillators lock in phase and two soft oscillators lock
out of phase. We compare our theoretical predictions with computer simulations of two examples:
a sinusoidally driven X2 force oscillator and two coupled van der Pol oscillators with X3 force.

PACS number(s): 03.20.+i, 46.10.+z

I. INTRODUCTION

Weakly coupled nonlinear oscillators have been a pop-
ular research topic for many decades [1-7]. A review
article by Chirikov [8] shows how the dynamics of a large
class of two weakly coupled conservative oscillators near
a resonance can be approximated by the dynamics of a
pendulum. We study the same systems with the addi-
tion of non-Hamiltonian perturbations, such as damping.
There is a lot of phenomenological and numerical work
done on these systems, for example, by Bohr et al. [5].
There are many physical applications of such systems,
including Josephson junctions [9-12], driven charge den-
sity waves [13], and oscillator models of Karman vortex
streets in fluids [14].

In the usual secular perturbation theory [1,2] canoni-
cal action-angle variables are introduced, secular terms
in the equations of motion are removed with a spe-
cial change of variables, the Hamiltonian is averaged
over one of the fast angle variables, and the Hamilto-
nian is expanded about the resonance. This reduces the
original four-dimensional two-oscillator system to a two-
dimensional dynamical system. This averaging is respon-
sible for removing the stochastic dynamics between the
Kol'mogorov-Arnol’d-Moser [15] surfaces. Because of the
non-Hamiltonian forces such as damping, our method dif-
fers in that we average and expand the equations of mo-
tion, and we use transformation functions to change to
action-angle variables as opposed to the generating func-
tions of Hamiltonian mechanics.

There is a large body of literature concerned with
linear oscillators that are perturbed by small nonlinear
forces [3,16]. For example, Nayfeh and Mook [3] applied
the method of multiple scales to a sinusoidally driven
Duffing oscillator. In this paper, we study oscillators
that may have large nonlinear forces that are not treated
as perturbations. In our analysis, we start with nonlin-
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ear conservative oscillators and add coupling (or driving)
and non-Hamiltonian perturbations.

In Sec. II, we derive a standard equation of motion
for a general class of two coupled oscillators. In Sec. III,
we discuss some general properties of the standard equa-
tion. In Sec. IV, we apply the results of Sec. II to an
example of a sinusoidally driven X3 force oscillator. In
Sec. V, we apply the results of Sec. II to an example of
two coupled X3 force van der Pol oscillators. In the Ap-
pendix, we present action-angle transformation functions
that are used to derive the standard equation in Sec. II.

II. STANDARD EQUATION

A. Derivation of the standard equation

We investigate the system of two coupled oscillators of
the form

po— Pi
Bi= (2.1)
pi = Fi(z:) + eLi(zs, pi) + ekiz;, (2.2)
dU,; xT;
Fi(z;) = _71155 ), (2.3)

where ¢,7 = 1,2, ¢ # j, z; is a displacement, k; and m;
are constants, € is a small constant number, and Uj is the
potential of the 7th oscillator. The analysis of this paper
is restricted to solutions of Eqs. (2.1) and (2.2) that are
bounded in some finite region of z, x2, p1, and p2 space
for all t. In this section, we look at both the case of a
driven oscillator (one-way coupling) and the case of two
coupled oscillators with two-way coupling. For the case
of a driven oscillator, we set k; =0, ks = k, and I'; = 0.
For the case with two-way coupling, we set k; = k£ and
kz = k.
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Next, we change variables z; and p; to their cor-
responding action-angle variables J; and ¢; by using
their corresponding transformation functions X;(J;, ¢;),
P;(J;, i), Ki(J;), and w;(J;) (¢=1,2) as explained in the
appendix [17].

In what follows, we investigate: the dynamics of
Egs. (2.1) and (2.2) close to a primary resonance, which
is when the angular frequencies of the two oscillators are
equal. In order to avoid secular terms, we use the follow-
ing change of dynamical variables:

® = ¢ — 1, (2.4)
Q = w3 (Jo) — wi(J), (2.5)
e = e(Jy, Ja), (2.6)
¢ = ¢1a (27)

where the function e(Jy, J2) is defined by e = Jy, for the
case of a driven oscillator, and e = J; + J;, for the case
with two-way coupling.

From Egs. (A21), (A35), and (A36) from the Appendix
and Egs. (2.1)—(2.7), the equations of motion of ®, Q, e,
and ¢ may be written as

0X,

. 90X,
¢=Q—66J (F2+k2X1)+€aJ (F1+k1X2) (28)
. € Owsy
= —= P, (T ko X
Q aws 075 2 (D2 + k2 X1)
€ Owy
—P; (T ki X. 2.9
m1w13J1 1 (T + k1 X32), (2.9)
. € Oe Py (T3 + kx X1)
e_mzwzan 2 (12 241
€ Oe
——P (T k 2.10
m1w13J1 1 (T + k1Xa), ( )
bp=w —e 8J1 LTy + k1 X3), (2.11)

where it is assumed that all quantities on the right-hand
side of the equations can be written as functions of just
®, Q, e, and ¢. Equations (2.8)—(2.11) are exact.

The two-oscillator system is near a primary resonance,
so we impose that €2 is of order €. By Egs. (2.8)—(2.11), ®,
Q, and e are changing, by a factor of order ¢, more slowly
than ¢. Because of this, we approximate the dynamics
of ®, 2, and e with the dynamics of an averaged version
of these equations of motion by averaging over the fast
variable ¢ [1,2,6,18,19]. We define an averaged function
(€)4(®, 2, ¢) by

2w
(€),(@,9,¢) = Ziﬂ £, ®,e,d)dp.  (2.12)
In what follows, we use
Xi(Ji, ps) = Z C;,1(J;) cos(le;), (2.13)

=0

P;(J;, i) = —mw; (J;) i C;.1(J;) sin(l¢), (2.14)

where ¢=1,2. We consider the case where the Fourier
coefficients C;;(J;), as defined in Egs. (2.13) and (2.14),
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decrease rapidly with increasing I, so we approximate
Ci1(J;) =0 for I > 1 in terms that have a ® dependence
after the averaging. These two approximations, averag-
ing and then dropping harmonics, give

. 8X, 8X,
= — R —T
=0 €< a7, F2> +€< a7, 1>¢

dC dC
(kz szzl kl d.]l L Cg,]_) Cos @, (2.15)
. € Ows € Ouwy
Q= —— PT P T
mawsa 6J ( 2 2>¢ miwi (9.]1 ( ! >
Ow Ow )
_501’102,1 (k2 8J2 ky BJ;) sin @, (2.186)
= ¢ 9 pryy, + —© ﬁ(PF) (2.17)
€= mawa2 BJ 2024 8J1 11 # ’

where all the terms with (), do not depend on &.

We expand the right-hand sides of Egs. (2.15)—(2.17)
in a Taylor series about Q = 0 and about e = ¢g, where eg
is a constant. We get the value of ¢ from the condition
é(2=0,e=1¢€9)=0.

® is of size of order 1. @ is expanded to first order
in e. We impose that Q is of size of order e. To be
consistent with the expansion of &, Q is expanded to
order €2. Due to the condition, é¢(Q = 0,e = e) = 0,
the first nonzero term in the expansion of ¢ is of size of
order €2. This makes e — eg of size of order €2 for ¢ of
size of order 1. This, in turn, makes the lowest order
term that depends on e in the expansion of ® and
of size of order 63 So by expanding to second order,
the ® and the Q equations do not depend on e. The
above restrictions and approximations enable us to study
a two-dimensional system in the variables ® and €, which
evolve independently of e and ¢.

Expanding Egs. (2.15) and (2.16) gives

@:Q+a1+azcos¢,
Q =a3z+ assin® + asQ + agdsin P,

(2.18)
(2.19)

where a; (i= 1,2,3,4,5,6) are constants of size of order
€. We call Egs. (2.18) and (2.19) the standard equation
because it describes the dynamics about resonance for a
more general class of two coupled oscillators than Licht-
enberg and Lieberman’s standard Hamiltonian [1].

B. Linear fixed point analysis
of the standard equation

An analytic expression for the fixed points of
Egs. (2.18) and (2.19) cannot, in general, be found.
We can, however, find analytic expressions for the fixed
points to first order in e. To first order, if ay > as,
there are two fixed points in Egs. (2.18) and (2.19) with
0 < ® < 2m: one at

®sy = [sin_1 (%> + w] mod 27, (2.20)
ag
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2
Qf,l = —aj + az — (%) (221)
a4
and one at
Do = [—sin—1 (E?_)] mod 2, (2.22)
aq
a2
Qf,z = —a; — az 1- ( 3) (223)
aq

where ®¢; (i=1,2) is a fixed point value of ® and Q¢ ;
(1=1,2) is a fixed point value of Q.

To lowest order in €, the characteristic exponents (® —
B, Q2 — Qf; ~ eit) are given by

1 [azas asag ay
i = = — + —-—(Q i y
° 2(114 tas 04) V az( £ T 1)

(2.24)

where ¢ = 1,2 and the + gives two values of s; for each
1. If ag < a3 then, to first order in ¢, there are no fixed
points in the standard equation. If a4 > a3, there is one
saddle point and one focal point. The focal point is of
special interest to us because it is the point where the
two oscillators can phase lock (® — const) if it is stable
(Re[s;] < 0). There is a bifurcation line at ag = a4 where
the saddle point and the focus collide and become one
fixed point (to lowest order in €).

III. PROPERTIES OF THE
STANDARD EQUATION DYNAMICS

A. Hard oscillators lock in phase and
soft oscillators lock out of phase

Phase locking occurs at a focal point in ®-Q space.
A linear fixed-point analysis (Sec. IIB) of the standard
equation, Egs. (2.18) and (2.19), with |as| > |as| gives
us the result that there is a focal point at the fixed point
with @41 =7 if a4 > 0and at the point with ®¢, =~ 0
if a4 <O0:

a
aq = — §C1,1C2,1 (k1 Gur + k2 wg)

por . ()

2=0,e=eg

where all quantities are evaluated at 2 = 0 and e = eq.
We define the nonlinearity parameter by

a= l (k e k28w2>

a7, T "2 57, , (32)

Q2=0,e=ep

where all quantities are evaluated at 2 = 0 and e = eo.
For the case of one-way coupling, G is the amplitude-
frequency coupling of the driven oscillator, g—.“;zz. For the
case of two-way coupling, G is the sum of the amplitude-
frequency coupling of the two oscillators 2« 3 J + g.“;
Assuming that C;; and C3; are both p051t1ve if the
sign of G is negative then the focal point is at &5 = =
and if G is positive then the focal point is at &5, ~ 0. We

define an oscillator with a frequency that decreases with
increasing action (g—; < 0) to be a soft oscillator and an
oscillator with a frequency that increases with increasing
action (2% > 0) to be a hard oscillator. This shows that
if the coupling forces are larger than other perturbations,
i.e., |ag| > |as|, and if the coupled oscillator system can
phase lock, i.e., Re[s;] < 0, then if G > 0 (hard oscilla-
tors) the oscillators phase lock in phase (® — 0) and if
G < 0 (soft oscillators) the oscillators phase lock out of
phase (® — 7).

B. Two coupled identical oscillators

We define two identical oscillators to be two oscilla-
tors that have the same equations of motion when k; = 0
for 7 =1,2. Inspection of the derivation of the standard
equation, Egs. (2.18) and (2.19), from Egs. (2.1) and
(2.2) shows that for two identical oscillators the constants
aj,az2,a3,a¢ are zero. With this, the standard equation is
given by

& Q, (3.3)
Q= aysin® + a5, (3.4)

where
ag = [ kC? | 3—2] ' (3

Q=0,e=¢ep
€ 0 1 Ow;

| e 8 P.T , (3.6
as |:mlg—.“;ll 8] (wl a‘] ( ' 1> ):| Q=0,e=eq ( )

where the expressions for a4 and as are evaluated at
Q2 = 0 and e = eg. We see that the dynamics of two
coupled identical oscillators with two-way coupling, near
resonance, is that of a damped pendulum. So if a5 < 0,
the two oscillators phase-lock for all initial conditions in
the ®-Q plane that are near the primary resonance.

IV. SINUSOIDALLY DRIVEN
X3 FORCE OSCILLATOR
A. Derivation of the standard equation

We now investigate two coupled oscillators with the
equation of motion

. P
T = Ell‘, (41)
p1 = —miwizy, (4.2)
. p
T2 = m_227 (43)

ﬁg = —C.’L‘z3 + ékﬂfl — Edpz, (44)

where wy, my, ma, ¢, k, and d are constants and € is a
small constant number.

We define the unperturbed forcing functions to be
Fi(z1) = —miw?z; and Fp(zs) = —cz2®. Note that
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this coupled oscillator system is of the form of the more
general coupled oscillator system, Egs. (2.1) and (2.2) in
Sec. ITA, with k; =0, k2 =k, 'y =0, and e['; = —edp,.

We next change variables z; and p; to their correspond-
ing action-angle variables J; and ¢; by using their corre-
sponding transformation functions X;(J;, ¢;), Pi(J;, ¢:),
K;(J;), and w;(J;) (¢ = 1,2) as explained in the appendix.
This gives

C1,1(J1) = 61,141(J1), (4.5)
Xi1(J1,61) = A1(J1) cos 1, (4.6)
P1(J1, ¢1) = —m1w1A1(J1)Sin¢1a (4-7)

Ky () = gmaed[Ai ()], (4.8)
wl(J1) = Wi, (49)
Ai() = %— (4.10)
Czyz(.]g) = BlAz(Jz), (4.11)
Xz(Jz, ¢2) = Az(Jz) Z B[ Ccos l¢2, (412)
=1
Py(J2,$2) = —maws(J2)A2(J2) Y IBisinly, (4.13)
=1
Ky (F2) = 3elAs ()], (419)
wZ(Jz) = pAg(Jz), (415)
A3(J2) = 4/ %2—, (4.16)

p= mye (4.17)

3V2m, fol V1= 24dz’

where B; are constants and the functions A;(J;) and
Az(Jz) are introduced for convenience. The first four
nonzero values of B; are approximately 0.9550, 0.043 05,
0.001 860, and 8.040 x 103 for l = 1, 3, 5, and 7, respec-
tively. p is approximately 0.8472, /;‘f;.

With Egs. (4.5)-(4.17), Egs. (2.15) and (2.16) can be
written as

. ek BipA;
=0 - ——— L] .
®=0Q 3 ody(Ja)? cos P, (4.18)
: ed 3my (o= 2,2 ek p’B1A; .
=——p3—= E — —————sin®.
Q 2P (lzol Bi* | A2(J2) 3 cAr(J) sin
(4.19)

Expanding the right-hand sides of Eqgs. (4.18) and (4.19)
as explained in Sec. ITA gives

. 3
e=Q—- ——-—cos?, (4.20)

Ccwiy

. ed 5, my > 25 2 ek p®B1A; .
Q——?p w1 (Zl B, —-2——sm¢§

2" ¢ 2 cw?

d > 3
_€_p2ﬁ (§ :12312) Q4+ i%gsing
=0

(4.21)

Equations (4.20) and (4.21) are the standard equation for
this driven oscillator system. Comparing it to Egs. (2.18)
and (2.19) can determine the value of the constants a;
(¢ = 1,2,3,4,5,6) for this system.

The location of a stable focal point of the standard
equation corresponds to a stable phase-locked solution of
the driven oscillator. When there is no stable focal point
in the standard equation there is no stable phase-locked
solution of the driven oscillator at a naturel primary res-
onance; that is, the steady state solution of the driven
oscillator has an angular frequency that is not close to
its unperturbed angular frequency wy(Jz,¢), where J ¢
is the steady state action of the driven oscillator.

B. Dimensionless equations

There are six physical parameters in this driven os-
cillator system. Scaling the equations of motion by the
length scale a and the time scale «, as defined by

a=w; @, (4.22)
c
1
— ‘—', 4-
= (4.23)

can produce dimensionless equations with just two pa-
rameters: a dimensionless damping d and a dimensionless
coupling constant k, given by

e ad d

d= —p? 2B%2 ) — .

- kA

k= 5p331i. (4.25)
2 vm3w?

In any equation related to this driven oscillator system,
the corresponding dimensionless equations can be ob-
tained by setting €, mq, m,, ¢, and w; equal to 1, d equal

to W;ﬁllsz)’ and k equal to ﬁ. With this, the
=0

standard equation, Eqgs. (4.20) and (4.21), can be written
as

& =Q —kcos®, (4.26)

Q= —d — ksin® — dQ + kQsin ®. (4.27)

C. Comparing with simulation

To show that the dynamics of the standard equation,
Egs. (4.26) and (4.27), is a good representation of the
dynamics of the driven oscillator near the primary res-
onance, we calculate the values of ®(t) and Q(t) from
the values of x;(t) and p;(¢) (¢ = 1,2) from a numerical
integration of the driven oscillator, Eqs. (4.1)—(4.4), and
compare this to values of ®(t) and Q(t) we get from the
standard equation, Egs. (4.26) and (4.27). There are four
initial conditions necessary to integrate the driven oscil-
lator system Eqgs. (4.1)—(4.4): two come from the initial
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-0.2

o

N 0.2 KN

—0.2 /W\v‘

WY
Y =

values of ® and (2, one comes from setting the driver os-

0

A
s

cillator amplitude 4, equal to 1, and the last from setting
the initial angle (phase) of the driver oscillator. Figure
1 shows ®-Q2 plane plots with k = 1 x 1072 and several

values of d.

By comparing Egs. (2.18) and (2.19) to Egs. (4.26)
and (4.27), we get the values of the a; (¢ = 1,2,3,4,5,6)
constants in the standard equation and use Egs. (2.22)-
(2.24) to get the expressions for the values of the phase-

locking point ®¢3,(2s > and the characteristic exponents
®ra2 (a) Q2 (b)
0.00 ' "] N
0.004 4
theory —
simulation ©
—0.257
. theqry —_ 0002 [ i
simulation ©
—0.507 E 0.000P > -
0.0 0.5 1.0 0.0 0.5 1.0 _
1 wy
Real Part of s Imaginary Part of s
(c) (d)
0.0 L T 0410 T TT
—2.5x 1074 - theory —
simulation ©
0.05 - B
—5.0 x 1074 - . theory — o
simulation ©
—7.5x 1074 | b >
0.00 + B
0.0 0.5 1.0 0.0 0.5 1.0
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FIG. 1. The ®-Q plane by numerically in-
tegrating the standard equation, Eqs. (4.26)
and (4.27) (thick lines), and by comput-
ing ® and 2 from a numerical integra-
tion of the exact equations of motion,
Egs. (4.1)—(4.4) (thin wiggly lines) with
(a) k = 1 x107% d = 0, and no
basin of attraction to the phase-locking
(focal) point; (b) & = 1 x 1072
d = 0.2 x 1072, and for some initial
conditions the dynamics asymptotically ap-
proaches the phase-locking (focal) point; (c)
k = 1x1072 d = 0.9 x 1072, and
for some initial conditions the dynamics
asymptotically approaches the phase-
locking (focal) point; and
(d) k=1x10"% d = 1.1 x 1072, and no
fixed points.

= —sin~! (g) ) (4.28)

=1/k2 - d2, (4.29)
P Y SV TR (4.30)
FIG. 2. (a)~(d) With d = 1%, k = 10,

48 values of @1, ranging from 0.2 to 0.99, are
used to calculate values of ®2, Qyf2, and
the real and imaginary parts of the charac-
teristic exponents by a numerical simulation
of Egs. (4.1)—(4.4) (simulation) are compared
to values from Eq. (4.30) (theory).
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V. COUPLED X?® FORCE
VAN DER POL OSCILLATORS

A. Derivation of the standard equation

We now investigate two coupled oscillators with the
equation of motion
. Pi
Ti = —
m;

—cix3 + en;(b; — x2)p; + ekx;,

(5.1)

Il

Di (5.2)
where 1,j=1,2, ¢ # j, m;, ¢;, b;, 1;, and k are constants,
and € is a small constant number. We define the unper-
turbed forcing functions to be F;(x;) = —c;z3. Note that
this coupled oscillator system is of the form of Egs. (2.1)
and (2.2) in Sec. I A with k; = k and €I'; = en;(b;—z?)p;.

We next change variables z; and p; to their correspond-
ing action-angle variables J; and ¢; by using their corre-
sponding transformation functions X;(J;, ¢:), P;(J;, ¢:),
K;(J;), and w;(J;) (i = 1,2) as explained in the Ap-
pendix. This gives

Cii(Ji) = BiA;(Jy), (5.3)
Xi(Ji 6:) = Ai(Js) Y _ Bicosle;, (5.4)
=1
Pl(J“ (]51) = —mlw,(Jl)Al(J,) Z lBl sin l(i)z, (5.5)
1=

Ki(J:) = qeil (], (5.6)
wi(Ji) = piAi(Ji), (5.7)
i) = 322k, (5.8)

. 2 2
@:Q—%B%(p2 - ”1) P2 cos®,

2 2
C207 C1pP3 A1,0

T/C;
- 3vV2m; fol Vv1-— 24dz’

where ¢ =1,2, B, are the same constants as in Sec. IV A,
and the functions A;(J;) are introduced for convenience.

Pi (5.9)

pi is approximately 0.8472, />

With Egs. (5.3)—(5.9), Egs. (2.15)—(2.17) can be writ-
ten as

d=0- %IEBf (Ezél—— E}é&) cos @,

5.10
o (5.10)

. 1 > mo
Q= -2—67]2b2 (Z l2Blz) z;pgAz

=1
1 > m
—gemby | D PBF | oA
2 =1 C1
m m
—enpo— p3 A3 + emo — pi A}
C2 C1
k 2A 2A
< p2 (p2 S, A —2—) sin @,

—= — 5.11
2 1 Ca Az Cy1 A1 ( )

,_ 1 -
é = 567’]21)2 (Z lzB,z> maps A3

=1
1 oo
+§€771b1 (;lszz> myp1 A3

—67]20'77’7,2,02143 — enlamlplAi, (512)

where o is a constant that is approximately 0.1273. Ex-
panding the right-hand sides of Egs. (5.10)—(5.12), as ex-
plained in Sec. IT A, gives

(5.13)

o0
. € mao my
Q=- 2:1232 by—2p2 — b —p2 ) ;1A
2(121 z) (nzzc2 P2 — T 1Cl P1 ) PLA10

mo mi 3 43
—€o (772— - 771—) P1A1,0 -
C2 C1

k

L 2Bt (ﬁ _ P_tf) _ 1
,:_g + —e:l g ) pir2Aie
2 c

ek
55 (
1 [ m m m m
2 1
X135 E B} | | n2ba—5p5 + mbr—5p5 | — 30 7]2—22,0‘21+”71*2*1P‘11 PIA%,
2 \= c3 ci c5 c

Qsin ®,

4 4 1 €
r + &) sin® +
Cc2 C1 /) P1pP2 L2 4 A
[ c1

Q

1

(5.14)

A0 =p2 g

=1 (771blm1p§ + n2bamap?

mMm1ps + n2mapt

)_ (5.15)
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Equations (5.13) and (5.14) are the standard equation for
this driven oscillator system. Comparing it to Egs. (2.18)
and (2.19) determines the value of the constants a;
(:=1,2,3,4,5,6), in the standard equation.

B. Dimensionless equations

There are nine physical parameters in this driven os-
cillator system. Scaling the equations of motion by the
length scale a1, for oscillator 1, and a3, for oscillator 2,
and the time scale «, as defined by

oo
= ) m

20 mi

(5e=)
e e

2
yo= e M2 (5.18)

o Cgbg’
1?B}
(=)

can produce dimensionless equations with the five dimen-
sionless parameters

bs, (5.16)

(5.17)

2
&= (T—z) , (5.19)
C2 \T1

i myby

by = —— .

LS by (5.20)
(ZFB?) o

- _ msb

M :6171\ =1 2 m%;, (5.21)
(ZIZBIZ) o

- _ mab

N2 = 6772\ L > 022 2, (5.22)

_ 2

k = _E@U__ .77_13 (5_23)

my

(leBlz> b262
=1

In any equation related to this driven oscillator system,
the corresponding dimensionless equations can be ob-
tained by setting mq, ma2, c2, and € equal to 1, ¢; equal
to 51, bl equal to —Z;T?t—;z—Blzbl’ bz equal to —Zfii—aﬂ—Blf, m

and k equal to %’%. With
1
these dimensionless parameters, the standard equation,

Eqgs. (5.13) and (5.14), can be written as

equal to %, n2 equal to %2,

d=Q-k(1-d)—~

cos P,
c1141,0

(5.24)

Q= [772 — fiby — (721 — 1) fiio] Véip®aie
~ p2
—k(1+¢&)—=sin®

Ve

2 - -
144 [772 + 716161 — 3 (2 + 1) ElA%,O] Q
+k(1-&)—2—Qsin®, (5.25)
CiAi,0
= /77151 + 72€1
A = —_— 5.26
1,0 i + 7]20% k] ( )

™
3V2 [y VI— 2%z

C. Comparing with simulation

To show that the dynamics of the standard equation,
Egs. (5.24) and (5.25), is a good representation of the
dynamics of the two coupled oscillators near the pri-
mary resonance, we calculate the values of ®(¢) and Q(t)
from the values of z;(t) and p;(t) (¢= 1,2) by numeri-
cally integrating the two coupled oscillators, Egs. (5.1)
and (5.2), and compare this to values of ®(¢t) and Q(t)
that we get by numerically integrating the standard equa-
tion, Egs. (5.24) and (5.25). We display the result of
this in ®- plane plots. There are four initial conditions
necessary to integrate the two coupled oscillators: two
come from the initial values of ® and €2, one comes from
e(t = 0) = eg, and the last from setting the initial an-
gle (phase) of oscillator one. Figures 3 and 4 show ®-Q
plane plots for several values of the five dimensionless
parameters.

VI. CONCLUSION

We have studied the dynamics of two conservative os-
cillators with perturbations from a linear displacement
coupling and non-Hamiltonian forces such as damping.
We have shown that near resonance a large class of driven
oscillators and two coupled oscillators can be transformed
to the same ordinary differential equations (ODEs) that
we call the standard equation: = Q+ay +azcosd,
Q = az+ assin® + a5 + ag2sin , where the constants
a4 and as are weighted sums and a;, a2, a3, and ag are
weighted differences, which depend on Fourier coefficients
and frequencies of the unperturbed oscillators and their
derivatives with respect to action. as, a4, and ag are di-
rectly proportional to the coupling constant. a;, a3, and
as are directly proportional to other multiplicative con-
stant factors as they appear in the noncoupling perturb-
ing forces (such as damping). The two variables ® and
Q are defined by ® = ¢2 — ¢1 and Q = wa(J2) — wi(J1),
where J;, J2, ¢1, and ¢, are defined by action-angle
transformation functions, Egs. (A16) and (A1l7), and
wz(J2) and wq(J;) are functionally the same as the an-
gular frequencies of the two uncoupled conservative os-
cillators.
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0 (a) Q (b)

-0.2

/.

FIG. 3. The ®-Q plane by numerically in-
tegrating the standard equation, Eqgs. (5.24)
. and (5.25) (thick lines), and by computing

T ® and Q from a numerical integration of
@ the exact equations of motion, Egs. (5.1)
and (5.2) (thin wiggly lines) with (a)
k=3x10"37; =7, =7x1073%,& =b, = 1;
(b) the same parameters as in (a) except

b1 = 1.3; (c) the same parameters as in (a)
except 71 = Az = 3 X 107%; and (d) the same
parameters as in (a) except by = 2; notice
that there are no fixed points in this case.

®

We showed that if a4 > a3 then there is a focal point
and a saddle point in the ®-Q space. Then if the real
part of the characteristic exponents s; is less than zero

% 9222 + a5 — %222 ) < 0, then the focal point will be

a stable phase-locking point. If, in addition, a4y > a3
(i.e., damping forces are small compared to coupling) the
phase difference ® at the phase-locking point depends

®

only on the sign of the nonlinearity parameter G, where

G = %‘}11 + 53_321 for two coupled oscillators.

Q=0,e=eg

This leads to the result that two hard oscillators (G > 0)
lock in phase and two soft oscillators (G < 0) lock out
of phase. For the case of two coupled damped identical
oscillators we showed that the dynamics near the primary
resonance, the standard equation, is that of a damped

FIG. 4. The ®-Q plane by numerically in-
tegrating the standard equation, Egs. (5.24)
and (5.25) (dashed lines), and by comput-

ing & and © from a numerical integration
of the exact equations of motion, Egs. (5.1)
and (5.2) (continuous wiggly lines), with (a)
E=3x10"3%f; =7 = Tx107%,8, = by = 1;
(b) the same parameters as in (a) except

M = 72 = 0; (c) the same parameters as
in (a) except by = 4; and (d) the same pa-
rameters as in (a) except b; = 6. Note that
because of overlap, the dashed lines are not
visible at most points.
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pendulum ® = Q, = aysin ® + asQ.

We have calculated explicit analytic expressions for the
constant a; in the standard equation for two separate os-
cillator systems, a sinusoidally driven X3 force oscillator
and two coupled van der Pol oscillators with X3 force.
For both systems numerical simulations of the ®-Q tra-
jectories were calculated from the original ODEs and the
corresponding standard equation. The standard equa-
tion’s trajectories appeared to be a smoothed shadow of
the original ODEs trajectories, even in parameter regions
near topographical transitions.

In this paper we have analytically and numerically
studied two types of coupled librating oscillators. How-
ever, the analytical methods used in this paper (i.e.,
the transformation functions and averaging method) can
be used to study coupled oscillators with other types
of coupling forces, coupled rotating oscillators, subhar-
monic and superharmonic resonances of coupled oscilla-
tors, general phase-locking rules of coupled oscillators,
and the long-time stability of phase locking of coupled
oscillators. For example, by changing the initial condi-
tions in the definitions of the action-angle transforma-
tion functions, Egs. (A19) and (A20), one could study
rotating oscillators near resonance. This can be applied
to find conditions for phase-locked rotational states in
weakly damped coupled Josephson junctions and driven
charge density waves. With the change of variables
® = r¢p; —sp; and 2 = rws — swy, where r and s are inte-
gers, it is possible to apply this analysis to subharmonic
and superharmonic resonances. In addition, the action-
angle transformation functions could be applied to more
than two coupled oscillators, such as chains of coupled
Josephson junctions [9-12].

In this paper, we averaged the equations of motion
over the ¢ variable, Eq. (2.7). This averaging allowed us
to ignore the ¢ variable. By averaging and expanding
the equation of motion for ¢, Eq. (2.11), near the reso-
nance, analytic expressions for the angular frequency of
the phase-locked oscillators can be derived. These ex-
pressions would be just functions of coupling, damping
and anti-damping constants, Fourier coefficients and fre-
quencies of the unperturbed oscillators and their deriva-
tives with respect to action evaluated near the resonance.
This may lead to general locking rules, such as under
what conditions a fast oscillator will lock a slow oscilla-
tor, as in some biological and chemical systems [4].

Futher, we ignored the dynamics of the e variable,
Eq. (2.6), because it evolved very slowly. The dynam-
ics of e determines the long-time behavior of the coeffi-
cients in the standard equation. This could be used for
determining when oscillators will lock or unlock at the
resonance over long times.
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APPENDIX: ACTION-ANGLE VARIABLES
1. Action-angle transformation functions

Hamiltonian methods cannot be used to solve
Egs. (2.1) and (2.2). We use transformation functions
[20], as opposed to generating functions, to change vari-
ables to action-angle variables in Sec. IT A.

We can use Hamiltonian methods to solve the unper-
turbed (uncoupled and undamped) single oscillator sys-
tem

Fo = %, (A1)
Iio - F(Il?o), (AZ)
F(zo) = 00200, (A3)

where z¢ and pg are a pair of canonical variables and U is

the potential of the oscillator. We restrict the solutions

of Egs. (A1) and (A2) so that the values of z and p are

bound to a finite region of z-p space. Equations (A1)

and (A2) can be derived from the Hamiltonian

93

Ho(.’to,po) = U(x()) + 5-,”—1’ (A4)

We introduce the action-angle variables [21], Jp and
¢o, of the unperturbed system, by

1
Jo = o fpodwo,
T

where the integration is carried over a complete cycle of
the motion and ¢ is the momentum conjugate of Jp.
The equations of motion of Jy and ¢ are

(A5)

Jo =0, (A6)
bo = wo(Jo), (A7)
wo(Jo) = 9Ko(Jo) (A8)

8Jy '’

where Ko (Jo) is the Hamiltonian of the unperturbed sys-
tem when it is transformed to action-angle variables and
wo(Jo) is the angular frequency of the unperturbed sys-
tem.

We define transformation functions Py and Xo, such
that

po = Po(Jo, $0), zo = Xo(Jo, do). (A9)
From Egs. (A1), (A2) and (A9)
0Py .  OPy ;
8—.]0 o+ %¢0 = F(X0)7 (A].O)
0Xo . 0Xo . Py
EYA Jo %0 b0 = ool (A11)
From Egs. (A6), (A7), (A10), and (A11)
wo(J0) g = F(Xo), (A12)



3570 LANCE E. ARSENAULT AND ALFRED W. HUBLER 51

12.¢ P
UJQ(J()) 84):,) = EO

(A13)

Given these transformation functions, the transformed
Hamiltonian of the unperturbed system Kq(Jo) is
Pg

Ko(Jo) =U(Xo) + —.

o~ (A14)

Equations (A8) and (A12)-(A14), along with the equa-
tion

(A15)

1
Jo= — fPodXo,
27

can be used to define the transformation functions
Po(Jo, o) and Xo(Jo, o) to within an arbitrary con-
stant.

2. Dynamics of action-angle variables

Now we study the perturbed single oscillator system

& = %, (A16)
p = F(z) + A(z,p,(, 1), (A17)
Fz) = - 2U(2) (A18)

dz

where = and p are independent dynamical variables, m
is a constazt, A is the perturbation, { represents other
time-dependent variables that are distinct from p and «,
t is time, and U is functionally the same as the function U
in Eq. (A3). ¢ can contain variables from other systems.
The analysis of this paper is restricted to solutions of
Eqgs. (A16) and (A17) that have values of = and p that
are bound to a finite region of z-p space. We do not
restrict A such that it can be derived from a potential.
Because of this, we cannot use Hamiltonian methods to
solve Egs. (A16) and (A17).

We transform = and p, in Egs. (A16) and (A17), to the
action-angle variables J and ¢ by using

z = X(J,4), (A19)
p=P(J,¢), (A20)
where X (J, ¢) and P(J, ¢) satisfy
X P
w(N) g5 = F(X), (A22)
I=o f PdX, (A23)
K(J):U(X)+%, (A24)
_ 9K(J)
w(z) = 2K, (A25)

with the conditions

P(J,0) =0,
F(X(J,0)) <0,

(A26)
(A27)

where the integration is carried over a complete cycle of
X (J,¢) and P(J,¢) as they change when ¢ goes from 0
to 2w with J held constant. The transformation func-
tions X and P are functionally the same as X, and
Py, respectively, if the conditions Py(Jp,0) = 0 and
F(Xo(Jo,0)) < 0 are applied. The general solution to
Eqgs. (A21)-(A27) can be written as

X(J,¢) = Ci(J) cos(ig),

=0

P(J,¢) = —mw(J) D _ ICi(J) sin(l$),

=1

(A28)

(A29)

where C;j(J) is a Fourier coefficient that is dependent on
J. The Fourier coeflicients C;(J) are the same action-
dependent Fourier coefficients as in the solution of the
unperturbed oscillator Egs. (A16) and (A17) with A = 0.

We now find the equations of motion for the perturbed
system Eqgs. (A16) and (A17) in terms of action-angle
variables J and ¢ that are defined by Eqgs. (A19)—-(A27).
From Egs. (A16), (A17), (A19), and (A20)

X . o0X. P

OP . OP .
8_¢¢+ WJ—F(X)‘F’\(XaPaCat)- (A31)
Solving the above for J and ¢ gives
¢= m 8J 9X 8P BX P 8J’ (A32)
8¢ 8J 8J 98¢
. [FPX)+MX,J¢0) 55 - 98
J= 35X 5P 09X 5P . (A33)
8¢ 8 ~ 9J 8¢

Taking the derivative of Eq. (A24) with respect to J, sub-
stituting F'(X) for — d(;gf) , followed by using Egs. (A21),
(A22), and (A25) for substitutions for F(X), £, and
81;3") , respectively, and rearranging gives

oX 0P _0X 0P _

d¢ 8J 8J 8¢
Equation (A34) shows that the denominators in
Eqgs. (A32) and (A33) simplify to 1. With Egs. (A21),
(A22), and (A32)-(A34), the equation of motion of the
perturbed system in the new variables J and ¢ becomes

q'gzw(J)_a_XM,\’

T
0X(J,9)
TR (A36)

where A = AN(X(J, ), P(J,¢),(,t). It should be noted
that there are no approximations in deriving Eqgs. (A35)
and (A36).

1. (A34)

(A35)

j:
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